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Abstract

In this study, a new two-dimensional shear deformable beam element is proposed for large deformation
problems. The kinematics of the beam are defined using an exact displacement field, where the rotation
angles of the cross-section caused by bending and shear deformations are described separately. Cubic
interpolation is used for determining the curvature of the beam due to bending, while linear interpolation
polynomials are used for the shear strain. The absolute nodal coordinate formulation, in which global
displacements and slopes are used as the nodal coordinates, is employed for the finite element discretization
of the beam. The capability of the element to predict static deformation is studied using numerical
examples. The results imply that the element is free of a phenomenon called shear-locking. The capability of
the element to model highly nonlinear behaviour is established using a bending test where the cantilever is
bent into a full circle using only four elements. A flexible pendulum and a spin-up manoeuvre are modelled
in order to study the behaviour of the element in dynamical problems. The proposed element is also
compared with an existing shear deformable beam element based on the absolute nodal coordinate
formulation. Finally, the simple linearization of the beam curvature based on the assumption of small
strain will be discussed.
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see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The need to model geometrical nonlinearity and highly flexible beam structures has increased in
a number of modelling cases. Many authors have pointed out that these topics become more
important when considering multibody systems. Existing formulations for the modelling of beam-
like structures, which are subject to finite rotations, have been presented, for example, by Simo
and Vu-Quoc [1,2] and Cardona and Geradin [3]. These formulations are based on the
geometrically exact beam theory. In this formulation, the nodal coordinates consist of absolute
translational coordinates and finite rotations. An element based on this formulation is capable of
representing exact rigid body rotations and is able to capture shear deformation. The drawback
associated with the geometrically exact beam theory is the interpolation of finite rotations, which
is often the source of complications. It is also important to note that the use of the geometrically
exact beam theory leads to a nonlinear description of inertia. This is due to the nonlinear relation
of the shape function matrix and the vector of the nodal coordinates. Sharf [4] has presented a
method in which the motion of each body is described in a floating reference frame with an exact
displacement field for beams. This formulation is based on the Euler–Bernoulli beam theory that
assumes the beam cross-section to remain perpendicular to the symmetry axis of the beam.
The aim of this work is to develop a beam element that employs exact kinematics, from the

Lagrangian point of view, for a planar, shear deformable Timoshenko beam. Finite element
discretization is carried out using the absolute nodal coordinate formulation [5]. This recently
introduced finite element formulation is well suited for the analysis of multibody systems where
flexible bodies with large rotational and translational movements are considered. Unlike the
floating frame of reference formulation, the absolute nodal coordinate formulation defines the
displacements and slopes at the nodes in a global inertial frame of reference. Using the
appropriate element shape functions, the absolute nodal coordinate formulation leads to the exact
description of rigid body dynamics [6].
Various elements based on the absolute nodal coordinate formulation have been developed for

beam and plate structures [7,8]. A two-dimensional shear deformable beam element for the
absolute nodal coordinate formulation has already been introduced by Omar and Shabana [9].
This element formulation uses a continuum mechanics approach for the displacement field when
deriving elastic forces. In the case of beams, this kind of approach should be used with care, since
different-order interpolation polynomials are used for the longitudinal and transverse directions
in the displacement field. Accordingly, this can lead to inaccuracies in the elastic forces, as is
pointed out in Ref. [10]. In the proposed element, a continuum mechanics approach is not directly
applied in the displacement field of the finite element. Instead, the proposed element employs the
exact displacement field where a continuum mechanics approach is applied. The exact
displacement field consists of rotations of the cross-section due to the curvature as well as due
to the shear angle of the beam. These rotations can be conveniently expressed using the slopes and
displacements of the element. Moreover, in the proposed element, all the strain components
are treated individually, as a result of which an accurate expression can be obtained for the
elastic forces.
In a traditional shear deformable beam model, linear shape functions are often used for both

the displacements and the rotations. As pointed out by Bathe [11], for instance, this can lead to
spurious shear strain that causes a phenomenon called shear locking. The objective of this study is
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to introduce a two-dimensional mathematical model that is capable of defining the proper
curvature and shear deformation of the beam without suffering from shear locking. The aim of
the paper is to show that an accurate shear deformable beam element can be obtained without the
need to interpolate the rotations.
2. Exact displacement field and nonlinear strains of the beam

2.1. Kinematics of the beam

The kinematics of a deformable beam can be expressed using a multibody approach in which
the displacement of an arbitrary point, P, of the beam is defined according to Fig. 1. For
simplicity, the local coordinate system that is located on the symmetry axis of the beam and the
global coordinate system are initially coincident. In the beam, a point P0 is located on the
symmetry axis of the beam, while point P is on the normal of the symmetry axis of the beam in the
initial condition.
Vector u0 defines the displacement of point P0 and can be written as follows:

u0 ¼ r0 � x0; ð1Þ

where x0 is the position vector of point P0 in the initial configuration and r0 is the vector that
defines the symmetry axis of the beam. The global displacement of an arbitrary point, P, can be
defined using the rotation matrix, A, and position vector, yP, as follows:

uP ¼ u0 þ AyP � yP; ð2Þ

where A is an orthogonal rotation matrix. In a two-dimensional case, this matrix can be written as

A ¼
cosðyÞ � sinðyÞ

sinðyÞ cosðyÞ

� �
; ð3Þ

where y is the rotation angle of the cross-section.
The Euler–Bernoulli and Timoshenko beam theories are commonly used approaches for beams.

Reddy [12], among others, has presented higher-order theories that relax the assumption of
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Fig. 1. The description of an arbitrary point, P, of the beam.
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constant transverse shear strain throughout the thickness of the beam. This paper studies the
exact displacement field for the nonlinear analysis of a shear deformable Timoshenko beam.
Timoshenko beam theory relaxes the assumption of the cross-section remaining perpendicular to
the symmetry axis but not that of the rigidity of the cross-section. This means that the cross-
section remains plane, and thus, the shear angle is constant over the cross-section. The angle of
the cross-sectional rotation in the case of a shear deformable beam is depicted in Fig. 2.
In order to capture the effect of the shear deformation in the displacement field, the overall

rotation of the cross-section, y; shown in Figs. 1 and 2, is defined as the sum of the shear angle, g;
and the angle due to the curvature of the beam, c, as follows:

y ¼ gþ c: ð4Þ

According to Eq. (2), the exact displacement field takes the form

uP ¼ u0 þ AcAgyP � yP; ð5Þ

where Ag is the transformation matrix due to the shear angle, and Ac is the transformation matrix
due to the curvature of the beam. The displacement field can also be written as

u ¼ u0 � yðsinðcÞ cosðgÞ þ cosðcÞ sinðgÞÞ; ð6Þ

v ¼ v0 þ yðcosðcÞ cosðgÞ � sinðcÞ sinðgÞÞ � y: ð7Þ

The shear angle, g; can be assumed to be small, goo1; as a result of which cos(g) can be set to be
equal to 1. Using this assumption, Eqs. (6) and (7) take the simplified form as follows:

u ¼ u0 � y sinðcÞ þ cosðcÞ sinðgÞð Þ; ð8Þ

v ¼ v0 þ y cosðcÞ � sinðcÞ sinðgÞð Þ � y: ð9Þ
�

�

�

Fig. 2. The deformation angle of the cross-section of the beam.
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The exact displacement field introduced in Eqs. (8) and (9) defines the displacement of an
arbitrary point on the beam. This rarely used nonlinear displacement field plays a fundamental
role when deriving the elastic forces and strain components in the following sections.
2.2. Strain and energy definitions

Using a continuum mechanics approach, no strains are generated in the beam during large rigid
body rotation [6]. The strain tensor can be written in terms of the displacement gradient, �D [7]. By
employing the notations from Fig. 1, the displacement gradient can be written as follows:

�D ¼
quP

qx
qX
qx

� ��1
¼ �J �J

�1

0 ; ð10Þ

where vector uP is defined in Eq. (5), x is the vector of the local coordinates of the beam and vector
X defines the initial configuration of the beam as X=Se0. Matrix �J0 is constant and is the identity
matrix if the beam is not curved and the local coordinate system of the beam is initially coincident
with the global coordinate system. Matrix �J is a displacement gradient with respect to the local
coordinates x and y. The right Cauchy–Green deformation tensor can be used to define the
Green–Lagrange strain tensor as follows [5]:

em ¼ 1
2
ð �D

T
þ �Dþ �D

T �DÞ: ð11Þ

Using the linear constitutive relation, the strain energy, U, of the beam can be written as

U ¼ 1
2

Z
V

rTedV ¼ 1
2

Z
V

eTEedV : ð12Þ

The strain vector is obtained from the strain tensor, em; as follows:

e ¼ �xx �yy 2�xy

� �T
: ð13Þ

The constitutive relation for an isotropic material can be written as

E ¼

lþ 2m l 0

l lþ 2m 0

0 0 m

2
64

3
75; ð14Þ

where l ¼ En=½ð1þ nÞð122nÞ� and m ¼ E=½2ð1þ nÞ�:
If �J0 is an identity matrix, the strain components, including the second-order terms, can be

expressed as

�xx ¼
qu

qx
þ
1

2

qu

qx

� 2

þ
qv

qx

� 2
" #

; ð15Þ
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�yy ¼
qv

qy
þ
1

2

qu

qy

� 2

þ
qv

qy

� 2
" #

; ð16Þ

�xy ¼
1

2

qu

qy
þ

qv

qx
þ

qu

qx

qu

qy
þ

qv

qx

qv

qy

� 
: ð17Þ

3. Finite element discretization

In linear total Lagrangian formulation for a two-node C0 beam element, the rotation of the
cross-section is independent of u0(x) and v0(x). For this reason, a linear polynomial, instead of a
cubic polynomial, can be used for both the displacements and the rotations, as is often the case in
the Euler–Bernoulli model. When the displacement field from Eq. (5) is used, it is possible to use
cubic interpolation for v0(x) and linear interpolation for the shear angle only. In the conventional
mixed interpolation of the beam, an element with m nodes, the following approximations are used
for the displacement field [11]:

v0 �
Xm

i¼1

S
c
i vi

0; y �
Xm

i¼1

S
c
i yi; g �

Xm�1

i¼1

S
g
i gi; ð18Þ

where S
c
i are the interpolation functions for the displacement and section rotation, correspond-

ingly, S
g
i ’s are the interpolation functions for the transverse shear strain and gi is the shear strain

at the Gauss point i [11]. Note that in Eq. (18) angles y and g are approximated, not their sin(-)
and cos(-), as they are expressed in the exact displacement field in Eqs. (8) and (9). This is due to
the assumption of small deformation within the element.
3.1. The absolute nodal coordinate formulation

In this study, a finite element procedure called the absolute nodal coordinate formulation is
used to define the beam element [5]. This formulation allows for the non-incremental solution of
problems involving large displacements and rotations. All nodal coordinates are defined in a
global inertia coordinate system, and no infinitesimal or finite rotations are used for the rotational
degrees of freedom. In the absolute nodal coordinate formulation, the element’s displacement field
in global coordinates can be approximated as follows [9]:

r ¼
r1

r2

� �
¼

a0 þ a1x þ a2y þ a3xy þ a4x
2 þ a5x

3

b0 þ b1x þ b2y þ b3xy þ b4x
2 þ b5x

3

" #
; ð19Þ

where vector r defines the location of an arbitrary point on the beam. Planar coordinates x and y

are defined in the local coordinate system of the beam. Due to the use of the y component in the
displacement field, the element is defined as a plane rather than a line. In the absolute nodal
coordinate formulation, the position vector, r, can be expressed using the shape function matrix,
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S, and the vector of nodal coordinates, e, as

r ¼
r1

r2

� �
¼ Se: ð20Þ

In this study, a two-node beam element, in which six nodal coordinates define each node, is used.
The nodal coordinates of the element are defined using the global coordinates and slopes, as
follows:

e ¼ eTi eTj
� �T

¼ rTi
qrTi
qx

qrTi
qy

rTj
qrTj
qx

qrTj
qy

� �T
; ð21Þ

where ri and rj are the global position vectors of nodes i (0, 0) and j (l, 0), while l is the length of the
element. The shape functions of the element must be able to describe arbitrary rigid body motion
in the global coordinate system. To ensure this feature, a complete set of rigid body modes must
be included in the shape functions [5]. For a two-node beam element, the shape function matrix, S,
can be written as follows:

S ¼
S1 0 lS2 0 lS3 0 S4 0 lS5 0 lS6 0

0 S1 0 lS2 0 lS3 0 S4 0 lS5 0 lS6

� �
; ð22Þ

where S1 ¼ 1� 3x2 þ 2x3; S2 ¼ x� 2x2 þ x3; S3 ¼ Z� xZ; S4 ¼ 3x2 � 2x3; S5 ¼ �x2 þ x3; S6 ¼

xZ; x ¼ x=l; Z ¼ y=l:
If the beam is initially coincident with the inertia coordinate system, displacement vector u0 can

be written as

u0 ¼ r0 � ½ x 0 �T ¼ ½ u0 v0 �
T; ð23Þ

where r0 is the position vector of point P0 on the beam’s symmetry axis according to Eq. (20) with
substitution y ¼ 0: In Eq. (23), x is the location of point P0 on the symmetry axis of the beam at
reference configuration (Eqs. (8) and (9)).
As pointed out by Omar and Shabana [9], vector qr=qy defines the cross-section of the beam.

This is because any arbitrary vector in the cross-section can be described using vector qr=qy:
Vector qr=qx; on the other hand, describes the tangent of the symmetry axis of the beam [9]. In the
case of an Euler–Bernoulli beam element, these vectors remain perpendicular to each other. The
curvature of the beam can be expressed independently of the cross-sectional rotation. A proper
definition of the curvature becomes more important when large deformations of the beam are
considered. In order to derive the proper expression for the curvature of the beam, the following
relations between the centreline rotation and the displacements, as given by Hodges, are used [13]:

cosðcÞ ¼
qðx þ u0Þ

qs
; ð24Þ

sinðcÞ ¼
qv0

qs
; ð25Þ

where x is the distance from the origin of the beam to point P at the reference condition and s is
the distance along the symmetry axis of the deformed beam, as shown in Fig. 1. By differentiating



ARTICLE IN PRESS

K.E. Dufva et al. / Journal of Sound and Vibration 280 (2005) 719–738726
Eqs. (24) and (25) with respect to x and applying the following description for s0:

s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u00Þ

2
þ v020

q
; ð26Þ

where (–)0 denotes differentiation with respect to x, Eqs. (24) and (25) can be written as

cosðcÞ ¼
1þ u0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0

0Þ
2
þ v020

q ; ð27Þ

sinðcÞ ¼
v00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u00Þ
2
þ v020

q ; ð28Þ

However, in the case of a shear deformable beam, vectors qr=qy and qr=qx may not be
perpendicular due to the shear strain. In the displacement field, Eqs. (8) and (9), this is expressed
using sin(g) and can be derived using angle b in Fig. 3, as follows:

sinðgÞ ¼ � cosðbÞ ¼ �
rTx ry

rxj j ry

�� �� ; ð29Þ

where ra ¼ qr=qa; a ¼ x; y:
In mixed interpolation, the displacements and transverse shear strains are evaluated separately.

This method is traditionally used to prevent shear-locking and to create more efficient elements
[11]. In the proposed element, linear shape functions can be used to approximate the shear
deformation sin(g) in Eq. (29). Mixed interpolation is used to achieve the linear distribution of the
bending strain along the longitudinal axis. It follows that

sinðgÞ � sinðgÞi 1�
x

l

� �
þ sinðgÞj

x

l

� �
; ð30Þ

where sinðgÞi and sinðgÞj are the components due the shear strains at the nodal points i (0, 0) and j
(l, 0) of the element, respectively. Due to the constant distribution of the shear strain across the
Y

ry

rx

r

R

X

�

�

Fig. 3. The cross-section of the beam defined by vector ry ¼ qr=qy:
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cross-section, a cross-sectional property, k, called the shear correction factor, must be used [11].
The correction factor is a dimensionless quantity and must be evaluated separately for each shape
of the cross-section. The shearing rigidity of a beam is defined as GAk.
When the vector of elastic forces is derived, the definitions of cos(c), sin(c) and sin(g) are

obtained from Eqs. (27), (28) and (30), respectively, and substituted into Eqs. (8) and (9).
The strain components, �xx and �xy; Eqs. (15) and (17), are expressed using partial derivatives
of the exact displacement field, Eqs. (8) and (9), with respect to x and y. The strain
component �yy may also be obtained using partial derivatives of the displacements, Eq. (16).
Due to the minor significance of this strain component in beams, the normal strain in the
y-direction is often assumed to be zero, and thus, the cross-section cannot deform. However,
in the proposed element, the cross-section is allowed to deform and the transverse normal
strain must be defined. In this study, the simplest form of strain in the y-direction is proposed as
follows:

�yy ¼ 1�
x

L

� � qr
qy

����
����
x¼0

þ
x

L

qr
qy

����
����
x¼L

� 1: ð31Þ

Poisson’s effect will be noticed, if the strain energy of the element, Eq. (12), is calculated using the
constitutive relation from Eq. (14); however, as pointed out in Ref. [10], this will lead to residual
transverse normal stresses in bending and overly stiff behaviour in the element. In order to avoid
this phenomenon, Poisson’s effect is neglected and the height of the beam assumed to remain the
same as in the initial condition unless loading is applied. The strain energy of the element can now
be written as

U ¼ 1
2

Z
V

ðE�2xx þ E�2yy þ 4kG�2xyÞdV : ð32Þ

The vector of the elastic forces, Qe, is defined using the total strain energy, U, and the nodal
vector, e, as

QT
e ¼

@U

@e
¼ eTK ð33Þ

In the above equation, matrix K represents the nonlinear stiffness matrix of the beam [5].

3.2. Generalized external forces

In the absolute coordinate formulation, external forces can be expressed using the principle of
virtual work. The virtual work done by an external force, F, applied at an arbitrary point, P, can
be written as [9]

dW e ¼ FTdr ¼ FTSde ¼ QT
e de; ð34Þ

where Qe is the generalized force vector associated with the nodal coordinates of the element.
When the distributed force over the element is considered, the virtual work can be obtained by
integrating Eq. (34) over the volume of the element. Also, external moments can be derived using
the principle of virtual work as follows:

dW M ¼ Mdy; ð35Þ
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where angle y defines the rotation of the beam section, and M is the applied external moment. The
virtual change of the cross-sectional orientation can be defined using vector ry as follows:

dy ¼
ðqr2=qyÞ dðqr1=qyÞ � ðqr1=qyÞ dðqr2=qyÞ

d
; ð36Þ

where d ¼ ðqr1=qyÞ2 þ ðqr2=qyÞ2 [9].
4. Equations of motion

In the absolute nodal coordinate formulation, a constant element mass matrix is defined in
global coordinate system and is the same as in linear structural dynamics [5]. The elastic forces, as
presented in this paper, are nonlinear functions of the nodal coordinates, as is usually the case in
the absolute nodal coordinate formulation. The equation of motion of the finite element is written
as [5]

Ma€e ¼ Q; ð37Þ

where Ma is the mass matrix of the element and Q can be written as follows:

Q ¼ Qa � Ke; ð38Þ

where Qa is the vector of the generalized nodal forces and K the nonlinear stiffness matrix. The
connectivity conditions of the element can be imposed as in the conventional finite element
method. Due to the global definition of the coordinates, the constraint equations are often linear
functions of the nodal coordinates [14].
5. Numerical examples

The numerical examples considered in this section deal with the static and dynamic behaviour
of the beam. In the first static example, a cantilever beam subjected to a tip load is studied, while
in the second static example the beam is bent into a full circle in order to demonstrate highly non-
linear behaviour. In these examples, the material model of the beam is considered to remain
within a linear elastic range during deformation. In the first example, Young’s modulus, E, is
2.07� 1011N/m2 and the shear modulus, G, is 7.9615� 1010N/m2. The correction factor, k, for
the rectangular cross-section is 5/6. The cantilever structure under investigation is shown in Fig. 4.
The symmetry axis of the beam can be rotated during the deformation, and the position vector

gradient in the longitudinal direction is set to be free. For this reason, all the nodal values at the
clamped end of the beam, except for the slopes associated to qr=qx; are constrained.

5.1. Linear, small-displacements tests

In the small-displacement studies, a slender beam and a stout beam with an emphasized shear
effect are tested. In the case of the slender beam, the beam’s width, w, is 0.1m and its height, h,
0.1m. In both linear cases, the tip load is set to F=1� 106 h3N. The vertical displacement is



ARTICLE IN PRESS

Fig. 4. The force and moment acting on the cantilever beam.

Table 1

The deformed position of the beam tip, SL ¼ 1846

Number of elements Tip position (X, Y) (m)

1 1.99999928036 �0.001548901

2 1.99999928035 �0.001548907

4 1.99999928035 �0.001548907

Analytical — �0.001548908
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compared to an analytical solution obtained using the linear beam theory [15]. The results of the
analyses are presented in Table 1, where the positions of the tip of the beam are shown for
different numbers of elements. As can be seen from Table 1, the results match the analytical
results when only one element is used. The slenderness ratio is used to describe the significance of
the shear deformation in the beam under investigation. In the case of a large slenderness value
(SL41000), the Euler–Bernoulli beam theory is valid, since shear deformation does not play a
significant role. The ratio is calculated as GAl2/EI [16]. For a slender beam, the slenderness ratio
(SL) is 1846.
In Table 2, the height of the beam is increased to 1.0m, and as a consequence the effect of shear

strain becomes noticeable. In this case, the slenderness ratio is 18.5. The result using one element
is practically the same as the analytical result and does not change when the number of elements is
increased.

5.2. Nonlinear, large-displacement tests

Large deflections of the beam are considered for the slender beam first. The results are
compared to an analytical solution by Gere and Timoshenko [15]. The analytical solution is based
on the differential equation for an exact deflection curve. In this example, the applied force is
obtained from the ratio Fl2/EI that is set to 1.5. The slenderness ratio of the beam is 1.8� 105,
while the height and width of the beam are 0.01m. The results of the analysis are shown in
Table 3.
In order to study large deformations of the stout beam, the height of the beam is increased to

0.5m, while the width of the beam is kept at 0.1m. The applied load is set to F=500� 106 h3N.
The results for the different numbers of elements and a comparison with the same problem
analysed using the ANSYS software are shown in Table 4. The ANSYS model is built using a



ARTICLE IN PRESS

Table 2

The deformed position of the beam tip, SL ¼ 18:5

Number of elements Tip position (X, Y) (m)

1 1.99999899000221 �0.00184734183

2 1.99999899000216 �0.00184734188

4 1.99999899000216 �0.00184734188

Analytical — �0.00184734299

Table 3

The deformation of the beam in the nonlinear deflection analysis, SL ¼ 1:8� 105

Number of elements Tip position and deformation angle (m and rad)

Tip position (X, Y) Deformation angle

1 1.854846 �0.644362 �0.66773

2 1.800762 �0.781511 �0.63817

4 1.787239 �0.813855 �0.63775

8 1.784410 �0.821216 �0.63930

16 1.784115 �0.821955 �0.63953

Analytical 1.784 �0.822 �0.63931
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Beam188 element type. It can be seen that the proposed element predicts a slightly larger
deformation than does the one obtained using ANSYS.

5.3. Full circle bending test

In order to ensure the behaviour of the element in highly nonlinear cases, the moment is applied
to the end of the cantilever beam. The applied moment is capable of bending the beam into a full
circle. The results are compared to solutions obtained from the shear deformable element
proposed by Omar and Shabana [9]. The beam is modelled using four elements. The length, l, of
the cantilever structure is 1m, cross-sectional area 1.257� 10�3m2, second moment of area
1.257� 10�7m4, Young’s modulus 2.0� 108N/m2. Poisson’s ratio is 0. The applied external
moment, M, at the end of the beam is lpEI=l: The moment is given with eight substeps, and the
deformation of the beam is plotted after each step. However, with the proposed element, the
solution can be obtained by applying the full moment in one step only. The deformation of the
proposed beam element is shown in Fig. 5. In the final configuration, the angle of the free end is
359.91. The results obtained using the element proposed by Omar and Shabana [9] are shown in
Figs. 6 and 7. When using four elements, the end tip does not reach a semicircle, which implies
overly stiff element responses. The use of ten elements gives a result similar to that obtained in the
previous studies for an absolute-nodal-coordinate-based beam element [17]. The error in the final
angle is about 10 percent and can be decreased if more elements are used. The use of 16 elements
gives a full circle.
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Table 4

The nonlinear deflection for a stout beam, SL ¼ 74

Number of elements Tip position (X, Y) (m)

Proposed ANCF ANSYS

2 1.84127, �0.71394 1.86449, �0.68639

4 1.84105, �0.71450 1.85297, �0.70409

8 1.84104, �0.71452 1.85003, �0.70852

16 1.84104, �0.71452 1.84929, �0.70963

Fig. 5. The cantilever beam subjected to the tip moment using the proposed element type.
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5.4. Flexible pendulum

In this section, the behaviour of the proposed element is demonstrated in a flexible dynamic
simulation. The first dynamic example looks at a freefalling flexible pendulum under an evenly
distributed gravity force. A beam with a rectangular cross-section is hinged with a pin joint as
shown in Fig. 8. The height and width of the beam are both 0.05m. The beam has a length of
1.2m, second moment of area of 5.2083� 10�7m4, modulus of elasticity of 0.7� 106N/m2, and
mass density of 5540 kg/m3. Poisson’s ratio is 0.3. Initially, the beam is oriented without initial
velocity, as shown in Fig. 8. The gravity constant is 9.81m/s2. The pendulum subjected to gravity
force is a conservative system in which the total energy must remain constant during the
simulation. The energy sum for the whole system isXn

i

ðTi þ Ui þ ViÞ ¼ const:; ð39Þ

where Ti is the element kinetic energy, Ui is the strain energy, Vi is the potential energy of the
element and n is the number of elements [9]. The kinetic and potential energy of the ith element are
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Fig. 7. The end-tip moment using comparable elements [9]; 16 elements are used.

Fig. 8. A flexible pendulum in the initial state.

Fig. 6. The end-tip moment using comparable elements [9]; 4 elements are used.
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calculated as described in Ref. [18]. The strain energy of one element is obtained from Eq. (32).
For the given initial conditions, the constant term in Eq. (39) should remain at zero. Fig. 9 shows
the energy distribution between the different components as a function of time. It is worth noting
that there is no energy loss during time integration. The deformations of the beam are large due to
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Fig. 9. The energy balance of the pendulum. —, T is the kinetic energy; - - - -, U the strain energy;yy, V the potential

energy of the system. Sum of the energy is marked as .
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the flexible material and one element is not sufficient for modelling the beam. The horizontal
displacement of the end tip of the beam is studied for different numbers of elements, and good
convergence of the element can be obtained from Fig. 10 which shows the results obtained using 3,
6 and 12 elements. The results for 6 and 12 elements are almost the same.
The vertical displacements using the proposed element and an element obtained from Ref. [9]

are depicted in Fig. 11 where the pendulum is simulated using the 6 proposed elements as well as 6
and 12 reference elements. As is to be expected from the static tests, the proposed element predicts
a much larger deformation than does the element introduced by Omar and Shabana [9].

5.5. Example of a spinning beam

The so-called geometrical stiffening effect occurs when a flexible beam rapidly spins around its
axis. This well-known effect caused by an axial (centrifugal) force must be coupled with a bending
moment to predict the proper deformation of the beam. The element proposed in this paper is
examined using the same parameters and given angular displacement y as in the work done by Wu
and Haug [19]. In this example, the angular displacement is given as

y ¼

os

Ts

1

2
t2 þ

Ts

2p

� 2

cos
2pt

Ts

� 
� 1

� " #
; toTs;

os t �
Ts

2

� 
; t � Ts:

8>>>><
>>>>:

ð40Þ

The steady-state angular velocity, os rad/s, is reached after Ts seconds. The beam has a length of
8m, width of 1.986� 10�3m, height of 3.675� 10�2m, modulus of elasticity of 6.895� 1010N/m2

and density of 2766.67 kg/m3. The displacement of the end point with respect to the undeformed
shadow beam obtained using an angular velocity of os=2rad/s and an acceleration time of
Ts=15 s is depicted in Fig. 12. The beam is defined using three elements. The exact solution for the
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Fig. 10. The vertical displacement of the end tip of the pendulum. —, 3 elements; —�—, 6 elements; —K—, 12

elements.

Fig. 11. A comparison between the proposed and Ref. [9] elements. —, 6 elements; —K— 6 elements [9]; —�—, 12

elements [9].
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beam extension, ux, is

ux ¼ l
tan alð Þ

al
� 1

� 
;

a ¼

ffiffiffiffiffiffiffi
rA

EA

r
os; ð41Þ

where os is the steady-state angular velocity [2]. According to the above equation, the extension
with respect to the shadow beam is now 2.7386� 10�5m at the steady-state phase. The extension
of the beam during the simulations (20 s) is shown in Fig. 13.
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Fig. 12. The displacement of the end point, os ¼ 2 rad/s, Ts ¼ 15 s.

Fig. 13. The steady-state extension of the beam, 2.7393� 10�5 m.
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When the proposed beam element is used for the spinning beam problem, good agreement is
achieved with the results of Refs. [2,19]. The steady-state extension of the beam is almost identical
with the analytical value, and small vibrations are obtained during steady-state phase, as in the
previous study with the absolute nodal coordinate formulation [20]. Based on these results, it can
be said that the element is capable of capturing the geometrical stiffening effect of a spinning
beam.
6. Linearization of the curvature

A simple linearization for the description of the angle due to the curvature is proposed in order
to improve the computational efficiency of the element. In this simplified expression, s0 can be
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written as [13]

s0 ¼ 1þ �; ð42Þ

where � is the elongation of the neutral axis. When small strains are considered, � is small when
compared to unity. For the assumption of small strain, this simplification has no effect on the
accuracy of the description of the curvature. It is important to note that this simplification does
not set any restrictions on the magnitude of the rotations [13]. Eqs. (24) and (25) can be expressed
in terms of the derivatives with respect to x, instead of the deformed symmetry axis s, as follows:

cosðcÞ ¼ 1þ u0
0; ð43Þ

sinðcÞ ¼ v00: ð44Þ

This is due to the assumption that s0 ¼ 1:
The linearized model is tested in a full circle bending case as well as in a large-displacement test.

The beam for the full circle test is the same as that used in the previous example. With the
linearized model, a small overlap occurs, as can be seen in Fig. 14.
In the nonlinear large-displacement study, accurate results are also obtained when the

linearized model is used. Table 5, in which the results are compared with those from Table 3,
Fig. 14. The shape of the deformed beam under the load of the external moment using the linearized model.

Table 5

A comparison between the exact and linearized model under a vertical tip load

Number of elements Tip position (X, Y) (m)

Exact model Linearized model

1 1.854846, �0.644362 1.854847, �0.644358

2 1.800762, �0.781511 1.800761, �0.781508

4 1.787239, �0.813855 1.787238, �0.813851
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shows that linearization does not affect the displacement of the end tip. The computation times of
the linearized model are about 10 percent shorter than those of the model based on the exact
description of elastic forces. When high longitudinal and transverse forces occur simultaneously,
the linearized model experiences difficulties in converging to the right solution.
7. Conclusions

This paper proposes a new shear deformable planar beam element based on the absolute nodal
coordinate formulation. A nonlinear continuum mechanics approach is applied to express the
elastic forces of the beam. The governing equations for a two-node shear deformable beam
element are developed utilizing the absolute nodal coordinate formulation, in which different-
order interpolation polynomials are used for the shear angle and rotation of the cross-section. In
order to achieve the linear distribution of the bending strain, the mixed interpolation technique is
applied for shear strain interpolation. Due to the deformable cross-section of the beam, the y-
directional strain component does not vanish and must be considered in the strain energy. This
component is interpolated from the nodal values by neglecting Poisson’s effect.
The static behaviour of the element is tested using numerical examples. Accurate results for

small, linear deflections, as well as for larger nonlinear deflections, are obtained. The numerical
results show that the response of the proposed element is accurate, also when additional deflection
from shear deformation is considered. The numerical results also imply that the element does not
suffer from a phenomenon called shear locking. In the example, in which a cantilever is subjected
to a moment load, the element is capable of bending into a full circle using only four elements.
This indicates the capability of the element to model highly nonlinear behaviour using fewer
degrees-of-freedom than the previous shear deformable beam element in the absolute nodal
coordinate formulation. The results for the cantilever beam are practically identical with those
obtained analytically. The linearization of the components in the displacement field does not
cause any noticeable inaccuracy when a vertical tip load is applied on the cantilever; however,
slight crossing occurs when the beam is bent into a full circle. When the proposed element is used
in dynamical simulations, computational time is saved, since fewer elements are needed due to the
accuracy of the element. The element is also capable of capturing the geometrical stiffening effect
in the rapidly spinning beam problem.
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